الگوریتمهای ژنتیک از اصول انتخاب طبیعی داروین برای یافتن فرمول بهینه جهت پیشبینی یا تطبیق الگو استفاده میکنند. الگوریتمهای ژنتیک اغلب گزینه خوبی برای تکنیکهای پیشبینی بر مبنای رگرسیون هستند.برای مثال اگر بخواهیم نوسانات قیمت نفت را با استفاده از عوامل خارجی و ارزش رگرسیون خطی ساده مدل کنیم، این فرمول را تولید خواهیم کرد : قیمت نفت در زمان t = ضریب ۱ نرخ بهره در زمان t + ضریب ۲ نرخ بیکاری در زمان t + ثابت ۱ . سپس از یک معیار برای پیدا کردن بهترین مجموعه ضرایب و ثابتها جهت مدل کردن قیمت نفت استفاده خواهیم کرد. در این روش ۲ نکته اساسی وجود دارد. اول این که روش خطی است و مسئله دوم این است که ما به جای اینکه در میان “فضای پارامترها” جستجو کنیم، پارامترهای مورد استفاده را مشخص کردهایم
با استفاده از الگوریتمهای ژنتیک ما یک ابر فرمول یا طرح، تنظیم میکنیم که چیزی شبیه “قیمت نفت در زمان t تابعی از حداکثر ۴ متغیر است” را بیان میکند. سپس دادههایی برای گروهی از متغیرهای مختلف، شاید در حدود ۲۰ متغیر فراهم خواهیم کرد. سپس الگوریتم ژنتیک اجرا خواهد شد که بهترین تابع و متغیرها را مورد جستجو قرار میدهد. روش کار الگوریتم ژنتیک به طور فریبندهای ساده، خیلی قابل درک و به طور قابل ملاحظهای روشی است که ما معتقدیم حیوانات آنگونه تکامل یافتهاند. هر فرمولی که از طرح داده شده بالا تبعیت کند فردی از جمعیت فرمولهای ممکن تلقی میشود.موتور الگوریتم ژنتیک یک جمعیت اولیه از فرمول ایجاد میکند. هر فرد در برابر مجموعهای از دادههای مورد آزمایش قرار میگیرند و مناسبترین آنها (شاید ۱۰ درصد از مناسبترینها) باقی میمانند؛ بقیه کنار گذاشته میشوند. مناسبترین افراد با هم جفتگیری (جابجایی عناصر دی ان ای) و تغییر (تغییر تصادفی عناصر دی ان ای) کردهاند. مشاهده میشود که با گذشت از میان تعداد زیادی از نسلها، الگوریتم ژنتیک به سمت ایجاد فرمولهایی که دقیقتر هستند میروند.